
Code Visualization

Simplifying debugging through the visual representation of data structures and their 
behavior



People Involved

Students

● Curtice Gough

● Catherine DiResta

● Joshua Hartzfeld

Faculty

● Dr. Ryan Stansifer Client/Advisor
● Dr. Philip Chan CSE4201 Instructor



Motivation

● Tedious debugging tasks
○ Time wasted on code tracing

○ Need to keep track of data movement

● Unintuitive UI design of modern debuggers
○ GDB

○ WinDBG

○ Radare

● Automatic data visualization
○ Code tracing becomes unnecessary

○ Data movement is animated between steps

● Simple, yet effective GUI
○ No need to memorize commands

○ Accomplish complex tasks more quickly

○ Look pretty :)

Goal



Key Features

● Interactive GUI
○ Automatically generate data structure diagrams

○ Animate data movement between steps

● Dynamic code analysis
○ Step line-by-line through source code

● User intervention
○ Manually override incorrect data structure diagrams

○ Choose how certain structures are represented



Algorithms and Tools

● PyQt
○ Widget-based GUI framework

○ Written entirely in Python 3

○ Cross-platform compatibility

○ Custom widgets for each data structure

● Traceprinter
○ Backend execution tracing borrowed from Java Visualizer
○ Perfectly matches our needs after some slight modification



Technical Challenges

● Integrating backend and frontend may prove difficult

● Inexperience with GUI development

● Client requested compatibility with modern versions of Java
○ Deprecated libraries

○ Unfamiliarity with Traceprinter’s source code



System Architecture Diagram
● trace.py

○ Interface between GUI and backend
○ Compiled Java code runs in 

Traceprinter environment
■ Produces JSON output
■ Returned to trace.py

● codeviz.py
○ Contains all GUI functionality
○ Sends data to trace.py for processing



Evaluation

● Speed

How long does it take to fully generate the visual elements after submitting code?

● Reliability

How often does the system correctly identify data structure types?



Progress Summary

Module/feature Completion % To do

Traceprinter backend 90% Integrate with frontend

GUI 0% Everything

Custom data structures 10% Write the rest of the data 
structures listed in the 
requirements document



Milestone 4

● Set up main window in PyQt

● Implement code editor

● Write custom List and Map implementations

● Modify Traceprinter to add multiple files to classpath



Milestone 5

● Implement data structure diagrams

● Conduct evaluation and analyze results

● Create poster and ebook page for Senior Design Showcase



Milestone 6

● Implement data structure diagrams

● Test/demo of the entire system

● Conduct evaluation and analyze results

● Create user/developer manual

● Create demo video



Task Matrix for Milestone 4

Task Curtice Josh Catherine

1. PyQt main window 50% 50% 0%

2. Implement code editor 50% 50% 0%

3. Custom List/Map implementations 0% 0% 100%

4. Modify Traceprinter compile-time options 100% 0% 0%



Thank You


