
Progress Evaluation: Milestone 2
Code Visualization

Team Members

• Curtice Gough cgough2019@my.fit.edu

• Joshua Hartzfeld jhartzfeld2020@my.fit.edu

• Catherine DiResta cdiresta2019@my.fit.edu

Client/Advisor

• Dr. Ryan Stansifer ryan@fit.edu

Progress Matrix

Task Completion % Curtice Joshua Catherine

1. GUI groundwork 50% 0% 50% 0%

2. Traceprinter JSON
parsing

75% 75% 0% 0%

3. Example Java
programs

50% 0% 0% 50%

Task Summary / Team Member Contribution

1. GUI groundwork

JOSHUA:

I’ve adopted the QT Designer tool to help me construct a user friendly and efficient template for
our GUI. Progress is slow but steady since I need to learn what QT Designer can offer and how
I can make the template useable with our backend aka trace printer. QT Designer also allows
easy animations and interactable text and graphical windows, so it satisfies what we need it for.
Designing the window should no longer be a hurdle, however due to my unfamiliarity with the
template system and PyQT5 engine’s ability to load templates we may encounter an issue with
communication between front and backend. Luckily for us we are using python so I assume
there will be numerous solutions that we will discover while in development.

2. Traceprinter JSON parsing

CURTICE:

mailto:cgough2019@my.fit.edu
mailto:ryan@fit.edu
mailto:cdiresta2019@my.fit.edu
mailto:jhartzfeld2020@my.fit.edu

So far, I’ve written about 50 lines of code. The focus thus far has been on implementing the
functions “main”, “jsonify_java”, and “step_bro”. The function “jsonify_java” is fully
operational. It takes a filename as its parameter, opens the corresponding file, reads in Java
source code, and formats it as valid JSON input for Traceprinter. In “main”, “jsonify_java” is
called, and the resulting JSON is sent as input to a subprocess which runs Traceprinter. The
output of this subprocess is captured and passed as a parameter to “step_bro”, which is still a
work in progress. This function will contain the necessary implementation for stepping through
each traced program state and representing variables accordingly.

3. Example Java programs

CATHERINE:

The Java programs that will be used for testing throughout the project were started. The first
batch of programs were designed to be easy to understand and simple to trace to allow for clear
results if anything was wrong. To begin, one program was created for each of the supported data
structures. The custom data structures were started as well. In order to test that the system
wouldn’t mistake any of the supported programs that use Hashmap and Heap were created for
the non-supported data structure tests.

Milestone 3 Task Matrix

Task Curtice Josh Catherine

1. Data type detection 100% 0% 0%

2. More GUI 0% 100% 0%

3. Custom data structure
implementations

0% 0% 100%

Task Summary

1. Data type detection

In the function “step_bro”, begin adding functionality to detect various data types captured in
“trace_output_json”. Accurately represent the values of each variable at each stage of the trace.

2. More GUI

Build enough of the main window that the Data Structure View is usable, and start writing the
custom PyQt widget used as the superclass for data structure diagrams.

3. Custom data structure implementations

Write a custom implementation of the “BinaryTree” data structure and add it to the “codeviz”
package.

Client Meeting Dates

• 27 October 2023

Faculty Advisor Signature:____________________________________ Date: ____________________

